skip to main content


Search for: All records

Creators/Authors contains: "Clevenger, Thomas C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We present the design and implementation details of a geometric multigrid method on adaptively refined meshes for massively parallel computations. The method uses local smoothing on the refined part of the mesh. Partitioning is achieved by using a space filling curve for the leaf mesh and distributing ancestors in the hierarchy based on the leaves. We present a model of the efficiency of mesh hierarchy distribution and compare its predictions to runtime measurements. The algorithm is implemented as part of the deal.II finite-element library and as such available to the public. 
    more » « less
  2. Abstract

    Problems arising in Earth's mantle convection involve finding the solution to Stokes systems with large viscosity contrasts. These systems contain localized features which, even with adaptive mesh refinement, result in linear systems that can be on the order of 109or more unknowns. One common approach for preconditioning to the velocity block of these systems is to apply an Algebraic Multigrid (AMG) V‐cycle (as is done in the ASPECT software, for example), however, we find that AMG is lacking robustness with respect to problem size and number of parallel processes. Additionally, we see an increase in iteration counts with refinement when using AMG. In contrast, the Geometric Multigrid (GMG) method, by using information about the geometry of the problem, should offer a more robust option.Here we present a matrix‐free GMG V‐cycle which works on adaptively refined, distributed meshes, and we will compare it against the current AMG preconditioner (Trilinos ML) used in theASPECT1software. We will demonstrate the robustness of GMG with respect to problem size and show scaling up to 114,688 cores and 217 billion unknowns. All computations are run using the open‐source, finite element librarydeal.II.2

     
    more » « less
  3. Abstract This paper provides an overview of the new features of the finite element library deal.II, version 9.2. 
    more » « less
  4. Abstract This paper provides an overview of the new features of the finite element library deal.II, version 9.1. 
    more » « less